Kruskalov algoritmus

V tomto tutoriáli sa dozviete, ako funguje Kruskalov algoritmus. Nájdete tiež pracovné príklady Kruskalovho algoritmu v jazykoch C, C ++, Java a Python.

Kruskalov algoritmus je algoritmus s minimálnym rozpätím stromu, ktorý berie ako vstup graf a nachádza podmnožinu okrajov tohto grafu, ktorá

  • tvoria strom, ktorý obsahuje každý vrchol
  • má minimálny súčet váh medzi všetkými stromami, ktoré je možné vytvoriť z grafu

Ako funguje Kruskalov algoritmus

Spadá pod triedu algoritmov nazývaných chamtivé algoritmy, ktoré nachádzajú miestne optimum v nádeji, že nájdu globálne optimum.

Začíname od okrajov s najmenšou hmotnosťou a neustále pridávame okraje, kým nedosiahneme svoj cieľ.

Kroky na implementáciu Kruskalovho algoritmu sú tieto:

  1. Všetky hrany roztriedte od nízkej hmotnosti po vysokú
  2. Zoberte hranu s najmenšou hmotnosťou a pridajte ju do kostry. Ak pridaním okraja vznikol cyklus, potom tento okraj odmietnite.
  3. Stále pridávajte hrany, kým nedosiahneme všetky vrcholy.

Príklad Kruskalovho algoritmu

Začnite s váženým grafom Vyberte hranu s najmenšou hmotnosťou, ak ich je viac ako 1, vyberte kohokoľvek Vyberte ďalšiu najkratšiu hranu a pridajte ju Vyberte ďalšiu najkratšiu hranu, ktorá nevytvára cyklus, a pridajte ju Vyberte ďalšiu najkratšiu hranu ktorý nevytvára cyklus a nepridáva ho Opakujte, kým nebudete mať kostru

Pseudokód Kruskalovho algoritmu

Akýkoľvek minimálny algoritmus spanning tree sa točí okolo kontroly, či pridanie okraja vytvorí slučku alebo nie.

Najbežnejším spôsobom, ako to zistiť, je algoritmus s názvom Union FInd. Algoritmus Union-Find rozdeľuje vrcholy na klastre a umožňuje nám skontrolovať, či dva vrcholy patria k rovnakému klastru alebo nie, a teda rozhodnúť, či pridaním okraja vznikne cyklus.

 KRUSKAL(G): A = ∅ For each vertex v ∈ G.V: MAKE-SET(v) For each edge (u, v) ∈ G.E ordered by increasing order by weight(u, v): if FIND-SET(u) ≠ FIND-SET(v): A = A ∪ ((u, v)) UNION(u, v) return A

Príklady jazyka Python, Java a C / C ++

Python Java C C ++
 # Kruskal's algorithm in Python class Graph: def __init__(self, vertices): self.V = vertices self.graph = () def add_edge(self, u, v, w): self.graph.append((u, v, w)) # Search function def find(self, parent, i): if parent(i) == i: return i return self.find(parent, parent(i)) def apply_union(self, parent, rank, x, y): xroot = self.find(parent, x) yroot = self.find(parent, y) if rank(xroot) rank(yroot): parent(yroot) = xroot else: parent(yroot) = xroot rank(xroot) += 1 # Applying Kruskal algorithm def kruskal_algo(self): result = () i, e = 0, 0 self.graph = sorted(self.graph, key=lambda item: item(2)) parent = () rank = () for node in range(self.V): parent.append(node) rank.append(0) while e < self.V - 1: u, v, w = self.graph(i) i = i + 1 x = self.find(parent, u) y = self.find(parent, v) if x != y: e = e + 1 result.append((u, v, w)) self.apply_union(parent, rank, x, y) for u, v, weight in result: print("%d - %d: %d" % (u, v, weight)) g = Graph(6) g.add_edge(0, 1, 4) g.add_edge(0, 2, 4) g.add_edge(1, 2, 2) g.add_edge(1, 0, 4) g.add_edge(2, 0, 4) g.add_edge(2, 1, 2) g.add_edge(2, 3, 3) g.add_edge(2, 5, 2) g.add_edge(2, 4, 4) g.add_edge(3, 2, 3) g.add_edge(3, 4, 3) g.add_edge(4, 2, 4) g.add_edge(4, 3, 3) g.add_edge(5, 2, 2) g.add_edge(5, 4, 3) g.kruskal_algo()
 // Kruskal's algorithm in Java import java.util.*; class Graph ( class Edge implements Comparable ( int src, dest, weight; public int compareTo(Edge compareEdge) ( return this.weight - compareEdge.weight; ) ); // Union class subset ( int parent, rank; ); int vertices, edges; Edge edge(); // Graph creation Graph(int v, int e) ( vertices = v; edges = e; edge = new Edge(edges); for (int i = 0; i < e; ++i) edge(i) = new Edge(); ) int find(subset subsets(), int i) ( if (subsets(i).parent != i) subsets(i).parent = find(subsets, subsets(i).parent); return subsets(i).parent; ) void Union(subset subsets(), int x, int y) ( int xroot = find(subsets, x); int yroot = find(subsets, y); if (subsets(xroot).rank subsets(yroot).rank) subsets(yroot).parent = xroot; else ( subsets(yroot).parent = xroot; subsets(xroot).rank++; ) ) // Applying Krushkal Algorithm void KruskalAlgo() ( Edge result() = new Edge(vertices); int e = 0; int i = 0; for (i = 0; i < vertices; ++i) result(i) = new Edge(); // Sorting the edges Arrays.sort(edge); subset subsets() = new subset(vertices); for (i = 0; i < vertices; ++i) subsets(i) = new subset(); for (int v = 0; v < vertices; ++v) ( subsets(v).parent = v; subsets(v).rank = 0; ) i = 0; while (e < vertices - 1) ( Edge next_edge = new Edge(); next_edge = edge(i++); int x = find(subsets, next_edge.src); int y = find(subsets, next_edge.dest); if (x != y) ( result(e++) = next_edge; Union(subsets, x, y); ) ) for (i = 0; i < e; ++i) System.out.println(result(i).src + " - " + result(i).dest + ": " + result(i).weight); ) public static void main(String() args) ( int vertices = 6; // Number of vertices int edges = 8; // Number of edges Graph G = new Graph(vertices, edges); G.edge(0).src = 0; G.edge(0).dest = 1; G.edge(0).weight = 4; G.edge(1).src = 0; G.edge(1).dest = 2; G.edge(1).weight = 4; G.edge(2).src = 1; G.edge(2).dest = 2; G.edge(2).weight = 2; G.edge(3).src = 2; G.edge(3).dest = 3; G.edge(3).weight = 3; G.edge(4).src = 2; G.edge(4).dest = 5; G.edge(4).weight = 2; G.edge(5).src = 2; G.edge(5).dest = 4; G.edge(5).weight = 4; G.edge(6).src = 3; G.edge(6).dest = 4; G.edge(6).weight = 3; G.edge(7).src = 5; G.edge(7).dest = 4; G.edge(7).weight = 3; G.KruskalAlgo(); ) )
 // Kruskal's algorithm in C #include #define MAX 30 typedef struct edge ( int u, v, w; ) edge; typedef struct edge_list ( edge data(MAX); int n; ) edge_list; edge_list elist; int Graph(MAX)(MAX), n; edge_list spanlist; void kruskalAlgo(); int find(int belongs(), int vertexno); void applyUnion(int belongs(), int c1, int c2); void sort(); void print(); // Applying Krushkal Algo void kruskalAlgo() ( int belongs(MAX), i, j, cno1, cno2; elist.n = 0; for (i = 1; i < n; i++) for (j = 0; j < i; j++) ( if (Graph(i)(j) != 0) ( elist.data(elist.n).u = i; elist.data(elist.n).v = j; elist.data(elist.n).w = Graph(i)(j); elist.n++; ) ) sort(); for (i = 0; i < n; i++) belongs(i) = i; spanlist.n = 0; for (i = 0; i < elist.n; i++) ( cno1 = find(belongs, elist.data(i).u); cno2 = find(belongs, elist.data(i).v); if (cno1 != cno2) ( spanlist.data(spanlist.n) = elist.data(i); spanlist.n = spanlist.n + 1; applyUnion(belongs, cno1, cno2); ) ) ) int find(int belongs(), int vertexno) ( return (belongs(vertexno)); ) void applyUnion(int belongs(), int c1, int c2) ( int i; for (i = 0; i < n; i++) if (belongs(i) == c2) belongs(i) = c1; ) // Sorting algo void sort() ( int i, j; edge temp; for (i = 1; i < elist.n; i++) for (j = 0; j elist.data(j + 1).w) ( temp = elist.data(j); elist.data(j) = elist.data(j + 1); elist.data(j + 1) = temp; ) ) // Printing the result void print() ( int i, cost = 0; for (i = 0; i < spanlist.n; i++) ( printf("%d - %d : %d", spanlist.data(i).u, spanlist.data(i).v, spanlist.data(i).w); cost = cost + spanlist.data(i).w; ) printf("Spanning tree cost: %d", cost); ) int main() ( int i, j, total_cost; n = 6; Graph(0)(0) = 0; Graph(0)(1) = 4; Graph(0)(2) = 4; Graph(0)(3) = 0; Graph(0)(4) = 0; Graph(0)(5) = 0; Graph(0)(6) = 0; Graph(1)(0) = 4; Graph(1)(1) = 0; Graph(1)(2) = 2; Graph(1)(3) = 0; Graph(1)(4) = 0; Graph(1)(5) = 0; Graph(1)(6) = 0; Graph(2)(0) = 4; Graph(2)(1) = 2; Graph(2)(2) = 0; Graph(2)(3) = 3; Graph(2)(4) = 4; Graph(2)(5) = 0; Graph(2)(6) = 0; Graph(3)(0) = 0; Graph(3)(1) = 0; Graph(3)(2) = 3; Graph(3)(3) = 0; Graph(3)(4) = 3; Graph(3)(5) = 0; Graph(3)(6) = 0; Graph(4)(0) = 0; Graph(4)(1) = 0; Graph(4)(2) = 4; Graph(4)(3) = 3; Graph(4)(4) = 0; Graph(4)(5) = 0; Graph(4)(6) = 0; Graph(5)(0) = 0; Graph(5)(1) = 0; Graph(5)(2) = 2; Graph(5)(3) = 0; Graph(5)(4) = 3; Graph(5)(5) = 0; Graph(5)(6) = 0; kruskalAlgo(); print(); )
 // Kruskal's algorithm in C++ #include #include #include using namespace std; #define edge pair class Graph ( private: vector 
 G; // graph vector 
 T; // mst int *parent; int V; // number of vertices/nodes in graph public: Graph(int V); void AddWeightedEdge(int u, int v, int w); int find_set(int i); void union_set(int u, int v); void kruskal(); void print(); ); Graph::Graph(int V) ( parent = new int(V); //i 0 1 2 3 4 5 //parent(i) 0 1 2 3 4 5 for (int i = 0; i < V; i++) parent(i) = i; G.clear(); T.clear(); ) void Graph::AddWeightedEdge(int u, int v, int w) ( G.push_back(make_pair(w, edge(u, v))); ) int Graph::find_set(int i) ( // If i is the parent of itself if (i == parent(i)) return i; else // Else if i is not the parent of itself // Then i is not the representative of his set, // so we recursively call Find on its parent return find_set(parent(i)); ) void Graph::union_set(int u, int v) ( parent(u) = parent(v); ) void Graph::kruskal() ( int i, uRep, vRep; sort(G.begin(), G.end()); // increasing weight for (i = 0; i < G.size(); i++) ( uRep = find_set(G(i).second.first); vRep = find_set(G(i).second.second); if (uRep != vRep) ( T.push_back(G(i)); // add to tree union_set(uRep, vRep); ) ) ) void Graph::print() ( cout << "Edge :" << " Weight" << endl; for (int i = 0; i < T.size(); i++) ( cout << T(i).second.first << " - " << T(i).second.second << " : " << T(i).first; cout << endl; ) ) int main() ( Graph g(6); g.AddWeightedEdge(0, 1, 4); g.AddWeightedEdge(0, 2, 4); g.AddWeightedEdge(1, 2, 2); g.AddWeightedEdge(1, 0, 4); g.AddWeightedEdge(2, 0, 4); g.AddWeightedEdge(2, 1, 2); g.AddWeightedEdge(2, 3, 3); g.AddWeightedEdge(2, 5, 2); g.AddWeightedEdge(2, 4, 4); g.AddWeightedEdge(3, 2, 3); g.AddWeightedEdge(3, 4, 3); g.AddWeightedEdge(4, 2, 4); g.AddWeightedEdge(4, 3, 3); g.AddWeightedEdge(5, 2, 2); g.AddWeightedEdge(5, 4, 3); g.kruskal(); g.print(); return 0; )  

Kruskalov vs Primov algoritmus

Primov algoritmus je ďalší populárny algoritmus minimálneho rozloženého stromu, ktorý používa inú logiku na vyhľadanie MST grafu. Namiesto toho, aby sa začalo od hrany, Primov algoritmus začína od vrcholu a neustále pridáva hrany s nízkou hmotnosťou, ktoré nie sú v strome, kým nebudú pokryté všetky vrcholy.

Komplexnosť Kruskalovho algoritmu

Časová zložitosť Kruskalovho algoritmu je: O (E log E).

Kruskalove algoritmické aplikácie

  • Za účelom rozloženia elektrických rozvodov
  • V počítačovej sieti (pripojenie LAN)

Zaujímavé články...